Gsadryer.ru

Промышленное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Соотношение мощности светодиодных ламп

Соотношение мощности светодиодных ламп

соотношение мощности светодиодных ламп

На светодиодные лампы и светильники переходят те, кто ищет новые способы экономии, так как замена ими обычных ламп накаливания, как для уличного освещения, так и внутреннего, несет в себе, по словам производителей светодиодной продукции, значительное сокращение расходов на электроэнергию.

Содержание статьи о соотношении мощности светодиодных ламп

Светодиодные лампы могут помочь в решении этой проблемы, но не следует их применять бездумно. Давайте попытаемся разобраться в разумности и целесообразности использования светодиодных ламп для замены других источников освещения в различных сферах применения.

Соответствие мощности светодиодных ламп и ламп накаливания

Если вы хотите получить световой поток (яркость) определенного значения и сравниваете светодиодные лампы и лампы накаливания, то первые имеют меньшую мощность. Соответственно, при использовании светодиодного освещения уменьшается количество потребляемой электроэнергии.

Мощность светодиодных ламп и ламп накаливания, таблица соответствия

Потребляемая мощность светодиодной лампы, ВтПотребляемая мощность лампы накаливания, ВтСветовой поток, Лм
2-320250
4-540400
8-1060700
10-1275900
12-151001200
18-201501800
25-302002500

Данная таблица поможет вам самому выбрать светодиодные лампы для эффективной замены старого освещения.

По световому потоку лампе накаливания на 60Вт соответствует светодиодная лампа 9Вт. Помимо меньшей потребляемой мощности при той же светоотдачи, светодиодная лампа имеет и другие преимущества. Энергоэкономичность светодиодных ламп в 7,5 раз большая. Это при освещении светодиодным источником света и лампами накаливания одной и той же мощности.

Сравнительная таблица светодиодной лампы 9Вт и лампы накаливания 60Вт (соответствие мощности и другие характеристики)

ХарактеристикиСветодиодная лампа 9WЛампа накаливания 60W
Потребляемая мощность, Вт960
Сила тока, А0.0720.27
Световой поток, Лм454.2612
Эффективность светоотдачи, Лм/Вт53.410.3
Температура цвета, К5500 — 70002800
Рабочая температура °C70180
Срок службы, часов300001000

Эффективность замены ламп накаливания светодиодными очевидна. Вы получаете яркий белый свет, экономите на электричестве благодаря соответствию мощности и покупке новых ламп, так как срок службы в 30 раз больший. Отзывы о светодиодном освещении и соответствии мощности можете посмотреть тут.

Что нужно знать при установке светодиодных ламп для уличного освещения

Светодиодные лампы большой мощности

Тип ламп, получивший самое широкое распространение, который применяется для уличного освещения – это ДРЛ мощностью 250 Вт. Чтобы заменить ее на более экономичный вариант в виде светодиодной лампы необходимо выбирать лампы, которые имеют цоколь Е40, а также примерно 30 сверхярких светодиодов. Их потребности в электроэнергии составляют около 30 Вт. Для примера, светодиодные лампы Е40 бренда POWERLEDS оснащены 28 сверхяркими светодиодами при потреблении 30 Вт.

В результате при правильном подборе соотношения мощности светодиодных ламп к тем, которые вы заменяете, вы можете сэкономить на расходах на электроэнергию почти в 12 раз!

Соотношение мощности экономных светодиодных ламп

Далее давайте рассмотрим в нашем сравнении самые экономичные светодиодные лампы, которые можно использовать в качестве замены галогенным лампам MR16 и GU10. 50-ваттны «галогенки» могут быть заменены светодиодными лампами, которые имеют в себе три сверхярких одноваттных светодиода. В результате, расход электроэнергии при установке такой лампы может составить около 3-4 Вт., а вот экономия в это случае может достигать до 12,5 раз.

Выбор светодиодной лампы для внутреннего освещения

Обычные лампы накаливания могут быть заменены светодиодными аналогами с цоколем Е27, которые также представляют собой отличный потенциальный источник экономии электроэнергии. Этот тип ламп производится в разнообразных версиях и модификациях, в томи числе в форме «шара», «свечи», «свечи на ветру», «груши» и многих других. Только светодиодных ламп с формой шара на сегодняшний день на рынке присутствует несколько десятков, начиная самых маломощных (3 Вт), которые могут заменять 40-ваттные лампы накаливания, до сверхмощных 12-ваттных и более, которые используются в промышленном секторе.

Соотношение мощности 100-ватной лампы накаливания к светодиодной

Потенциальную экономию можно посчитать путем сравнения 100-ваттных ламп накаливания с их светодиодными эквивалентами. Для примера возьмем светодиодные лампы с цоколем E27, которые могут излучать световой поток от 270 до 290 лм или более мощные версии с 600 лм. Однако потребляют они при этом всего 3,2 Вт. При сопоставлении100 и 3,2 Вт экономия электроэнергии составляет почти в 31,3 раза!

Давайте также проведем соотношение мощности при замене светодиодными лампами Т8 их люминесцентных аналогов. Потолочные светильники с четырьмя такими лампами по 18 Вт каждая потребляет 72 Вт. Однако, если мы в этот же светильник установим их аналоги, светодиодные лампы мощностью 8 Вт, то потребление электроэнергии составит всего 32 Вт, что говорит об экономии в 2,25 раза.

Для того чтобы точно подобрать светодиодный аналог для замены ваших ламп накаливания или других источников света можно воспользоваться специальными таблицами, которые можно легко найти в интернете.

Целесообразность правильного соотношения при выборе и установке светодиодных ламп взамен других источников освещения позволяет добиться максимальной экономии электроэнергии при достаточно комфортном уровне освещения для глаз.

Эти два фактора могут перевесить любые недостатки светодиодных ламп, так как даже независимо от расходов на их покупку, экономия все равно является очевидной.

Мощь рассеянной надежды

Чтобы наглядно показать Вам, в чем заключается подвох, мы приобрели три дешевые светодиодные лампы, торговую марку которых мы сознательно не упоминаем, чтобы не быть обвиненными в недобросовестной конкуренции (хотя, как еще иначе назвать действия продавца и производителя данных ламп!).

Здесь важно заметить, что при включении все протестированные образцы выдают световой поток, вполне соответствующий их заявленной мощности. Казалось бы, отлично, что ещё может быть нужно?

  • А ещё нужно, чтобы заявленная мощность соответствовала потребляемой мощности, т.е. чтобы Ваш электросчётчик крутился именно на то количество ватт, которое Вы прочли на коробке. Забегая вперёд, скажем, что именно в этом основная проблема.
  • Также нужно, чтобы лампа проработала долго, а не потускнела через месяц-другой. И это вторая проблема.
  • И ещё нужно, чтобы горение лампы заключалось только в генерации света, а не огня. А после того, что мы увидели внутри, у нас совсем нет в этом уверенности.

Итак, мы разобрали лампы и вот что, к своему изумлению, обнаружили внутри.

Как правильно измерять мощность светодиодной ленты

Часто в интернете поднимается вопрос о несоответствии мощности светодиодной ленты указанным на упаковке характеристикам.

В этом материале мы подробно объясним, как проводятся замеры мощности ленты, с чем связано падение мощности на 5 метрах, и почему мы указываем мощность для 1 метра.

Формула расчета потребляемой мощности ленты (Вт)

Потребляемая мощность (Вт) — это произведение силы тока (А) на напряжение питания (В). Обе эти характеристики мы можем измерить в домашних условиях с помощью обычного мультиметра.

Для вычисления потребляемой мощности (Вт) мы будем использовать формулу P(Вт) = U(В) * I(А), где U — напряжение в Вольтах, I — сила тока в Амперах.

Необходимое оборудование

— Блок питания 12 В
— Светодиодная лента 5 м (12 В)
— Ножницы
— Отвертка крестовая
— Мультиметр
— Переходники (коннекторы)

Какие замеры нужно произвести?

  • Замер напряжения питания (В) на начальном и конечном участках ленты. Для нахождения частичной потери напряжения питания на конечном участке ленты.
  • Замер потребляемого тока (А). Для дальнейшего вычисления потребляемой мощности.

Проведение измерений

5 метров ленты

Для начала необходимо подключить светодиодную ленту 5 м к блоку питания.

Подключение производится при выключенном напряжении электросети 220В с соблюдением полярности контактов подключения и сторон подключения (см. Подключение ленты к блоку питания).

Провести замер напряжения питания (В) в начале ленты. Используя вольтметр (В) (одна из функций мультиметра), произвести параллельное подключение к начальному отрезку светодиодной ленты 5 м.

Провести замер напряжения питания (В) в конце ленты. Используя вольтметр (В) (одна из функций мультиметра), произвести параллельное подключение к конечному отрезку светодиодной ленты 5 м.

Сравнить полученные результаты.

Объяснение полученных результатов:
Падение напряжения питания в конце ленты вызвано сопротивлением медной подложки, а также ограничением понижающих резисторов, участвующих в электрической схеме.

Произвести замер показания тока (А) на ленте 5 м.

Для этого:
Подключить последовательно амперметр (А) (одна из функций мультиметра), соединив в электроцепь блок питания, амперметр и светодиодную ленту 5 м. Произвести замер показания тока (А) на ленте 5 м.

Оформить полученные данные для дальнейшего сравнения.

Отрезать от катушки 5 м отрезок 1 м.

Необходимо подключить светодиодную ленту 1 м к блоку питания. Подключение производится при выключенном напряжении электросети 220В с соблюдением полярности контактов подключения и сторон подключения (см. Подключение ленты к блоку питания).

Провести замер напряжения питания (В) в начале ленты. Используя вольтметр (В) (одна из функций мультиметра), произвести параллельное подключение к начальному отрезку светодиодной ленты 1 м.

Сравнить полученные результаты.

Объяснение полученных результатов:
Падение напряжения питания на конце ленты присутствует, но гораздо меньше, чем на 5 метрах. Так как отрезок ленты короче – меньше и падение напряжения.

Произвести замер показания тока (А) на ленте 1 м.

Для этого:
Подключить последовательно амперметр (А) (одна из функций мультиметра), соединив в электроцепь блок питания, амперметр и светодиодную ленту 1 м. Произвести замер показания тока (А) на ленте 1 м.

Оформить полученные данные для дальнейшего сравнения.

0,5 метра ленты

Отрезать от катушки 5 м отрезок 0,5 м или разрезать пополам 1 м.

Необходимо подключить светодиодную ленту 0,5 м к блоку питания. Подключение производится при выключенном напряжении электросети 220В с соблюдением полярности контактов подключения и сторон подключения (см. Подключение ленты к блоку питания).

Провести замер напряжения питания (В) в начале ленты.

Используя вольтметр (В) (одна из функций мультиметра), произвести параллельное подключение к начальному отрезку светодиодной ленты 0,5 м.

Провести замер напряжения питания (В) в конце ленты.
Используя вольтметр (В) (одна из функций мультиметра), произвести параллельное подключение к конечному отрезку светодиодной ленты 0,5 м.

Сравнить полученные результаты.

Объяснение полученных результатов:

Падение напряжения питания на конце ленты присутствует, но гораздо меньше, чем на 5 метрах, и не существенно меньше, чем на 1 метре. Так как отрезок ленты короче – меньше и падение напряжения.

Произвести замер показания тока (А) на ленте 0,5 м.

Для этого:
Подключить последовательно амперметр (А) (одна из функций мультиметра), соединив в электроцепь блок питания, амперметр и светодиодную ленту 0,5 м. Произвести замер показания тока (А) на ленте 0,5 м.

Оформить полученные данные для дальнейшего сравнения.

Результаты замера

При замерах выходное напряжение питания с блока питания (в начале ленты) было стабильным 12 В.

При замере напряжения питания на конечном участке 5 метров мы получили падение напряжения на 2-2,5В. Как говорилось ранее, это связано с сопротивлением медной подложки, а также ограничением понижающих резисторов, участвующих в электрической схеме.

При замере 1 метра в начале и конце отрезка получили, что падение напряжения практически отсутствует. Показания замера стабильны.

При замере 0,5 метра в начале и конце отрезка получили, что падение напряжения практически отсутствует. Показания замера стабильны.

Теперь рассмотрим полученные измерения силы тока.

Мы видим, что для светодиодной ленты с указанной потребляемой мощностью (Вт/м) -14,4 Вт/м она имеет следующие значения:

— для 5 метров — 5,4А
— для 1 метра — 1,2А
— для 0,5 метра — 1А

В последнем случае (для отрезка 0,5 м) полученное значение силы тока превышает все ранее измеренные. Здесь стоит учитывать тот факт, что использование светодиодной ленты менее 0,5 м не рекомендуется из-за того, что в самом начале светодиодной ленты получается максимальное значение силы тока, что вызывает повышенный нагрев начального участка и приводит к быстрой деградации светодиодов.

Произведем подсчет потребляемой мощности на замеренных участках.

Для 5 метров — P(Вт) = 12В * 5,4А = 64,8 Вт
Для 1 метра — P(Вт) = 12В * 1,2А = 14,4 Вт
Для 0,5 метра — P(Вт) = 12В * 1А = 12 Вт

На самом стабильном участке ленты в 1 метр мы получаем потребляемую мощность, указываемую в характеристиках.

Рассмотрим, как получают потребляемую мощность (Вт) на ленте в 5 м.

Для этого берут значение потребляемой мощности с 1 метра и умножают его на 5 м. Полученное значение считается максимальным значением потребляемой мощности.

Т.е. мы не указываем значение — P(Вт) = 12В * 5,4А = 64,8 Вт,
а в характеристиках указывается — 14,4Вт/м * 5 м. = 72 Вт.
Максимально потребляемая мощность с 5 метров — 72 Вт.

Еще раз хотим акцентировать ваше внимание, что это прежде всего необходимо для правильного расчета потребляемой мощности (Вт) источника питания — блока питания.

В процессе создания световых решений возникает необходимость использования отрезков различной длины, и расчет необходимой потребляемой мощности блока питания может вызвать ряд затруднений.

Но, зная показания со стабильного общепринятого участка в 1 м, мы можем с уверенностью проектировать и воплощать в жизнь самые требовательные световые проекты.

Расчет потребления

Как описывалось выше мощность светодиодной полоски (сколько ватт потребляет метр светодиодной ленты), зависит от общего числа диодов на один погонный метр. Самые мощные полоски могут гарантировать полноценное освещение, главным образом это изделия с количеством чипов от 120-240 штук на погонный метр. Питание устройств осуществляется при помощи блоков различного напряжения (12, 18, 24 В), при этом суммарное потребление не должно быть выше 80% рассчитанной номинальной мощности преобразователя напряжения. Сколько электричества потребляет светодиодная лента можно довольно просто определить самостоятельным расчётом. Рассмотрим конкретный пример, используем для расчета одну из наиболее популярных лент LF-5050 60Led. Для полоски длинной 10 погонных метров мощность составит: 10×15=150 Вт (мощность всей полоски). При этом мощность блока питания должна быть минимум 80% о номинальной, то есть необходимо дать запас мощности для защиты от перегруза. Для этого общую мощность умножаем на запас в 30%: 150х30/100 = 45 Вт (это только 30% от общей мощности), мощность с запасом будет равна: 45+150=195 Вт – это будет потребляемая мощность полоски. Для того чтобы посчитать энергопотребление необходимо вычислить среднее время работы изделия в сутки. Например, если по расчету полоска в среднем будет работать около 4 часов в сутки, то энергопотребление составит: 195×4/1000= 0,78кВт/ч, все просто.

Почему перегорают светодиодные лампочки? Проводим эксперимент

Многие водители, меняющие автомобильные лампочки накаливания на светодиодные, отмечают недолгий срок жизни последних. Лампы либо прекращают светить, либо, что еще более неприятно, начинают хаотично подмаргивать. Почему это происходит – ведь светодиод, по сути, почти вечный прибор? Попробуем разобраться!

Локализация проблемы и чуть-чуть теории

Вот типичный пост с одного из «светодиодных» форумов:

— Поменял в машине лампы на светодиоды (никакого драйвера, тупо понижающие сопротивления) в плафоне салона, габаритах и подсветке багажника, через 3-4 месяца начал мерцать плафон в салоне (именно моргать как стробоскоп, одна линейка SMD-диодов, потом две), затем такая же мутотень с одним габаритом произошла. Поменял в плафоне лампу на новую — через 2 месяца эффект повторился. Вопрос — почему это происходит? Дело в качестве компонентов или тут другая проблема?

Ernesto

Попробуем разобраться! И начнем с теории. Светодиод питается строго определенным током, который нормирован производителем. Меньше – можно, больше – нельзя! Поэтому последовательно с «гирляндой» диодов включается элемент, ограничивающий или стабилизирующий ток через них до значения, рекомендованного производителем диодов.

Собственно, к долговечности диодов в лампах со встроенным стабилизатором тока (который часто называют «драйвером») нет претензий. Однако большинство продающихся сегодня LED-ламп небольшой мощности (габаритные огни, подсветка салона, приборной панели, поворотников и т.п.) – это лампы, сделанные без «драйвера», по упрощенной схеме: не со стабилизатором тока, а с ограничителем, роль которого выполняет простой резистор. С ним схема простейшей диодной лампочки небольшой мощности выглядит так:

002.jpg

Наиболее характерные неисправности таких светодиодных ламп:

  • Полное перегорание – выход из строя одного диода в цепочке. Если цепочка в лампе одна, то из-за сгорания любого из диодов последовательная цепь разрывается, и лампа гаснет целиком.
  • Частичное перегорание – выход из строя одной из цепочек, если их в лампе несколько. Не вызывает погасание, но яркость падает.
  • Мерцание-«стробоскоп» – своеобразный дефект «умирающего» диода в цепочке, когда от перегрева меняется p-n-структура кристалла – на полупроводнике образуется нестабильная область, то пропускающая ток, то нет.

Так почему LED-лампочки перегорают? В чем кроется проблема их недолговечности? В том, что производители не используют стабилизаторы тока, а применяют элементарные резисторные ограничители? Отчасти да. но не только!

Даже простейший резистор неплохо выполняет свою функцию в качестве «бронежилета» для светодиодов, защищая их от избыточного тока и преждевременной гибели. Но только в том случае, если:

  • Номинал этого резистора корректно рассчитан и обеспечивает безопасный ток через диоды;
  • Напряжение питания стабильно.

А вот ни того, ни другого зачастую нет. Китайские горе-инженеры знают, что автовладельцы, как правило, покупают LED-лампочки по принципу: «А включите мне её, я посмотрю, как светит!». И продавцы готовы идти навстречу покупателям – у них всегда под рукой специальный стенд с разнообразными патронами и аккумулятором, на котором они готовы зажечь любую лампу на пробу. А раз клиент «любит глазами», то производители ламп рассуждают следующим образом – нужно поставить такой токоограничительный резистор, чтобы лампочка загорелась отчаянным светом и выглядела привлекательно даже на 10-11 вольтах питающего стенд старого аккумулятора, который давно не заряжался!

В итоге диоды лампы даже при 12 вольтах УЖЕ работают с перегрузкой, а после того, как двигатель завели, напряжение в бортсети, питающее диоды, поднимается с 12 до 14,2 вольт – а это, на минуточку, почти 20% разницы! Ток еще вырос – уже до опасных величин. Вырос ток – выросла температура кристаллов диодов, что дало лавинообразно еще больший рост тока – и диоды перешли в режим работы на износ!

Переходим к практике!

Чтобы продемонстрировать, как это выглядит, переходим к экспериментам – элементарным, но наглядным! Просто подадим на несколько наобум купленных диодных ламп стандартное для автомобильной бортсети напряжение 14,2 вольта и посмотрим на потребляемый лампой ток, разогрев лампы и дальнейший рост тока.

Протестируем пару разных моделей ламп типа W5W, лампу C5W, лампу-панель с цоколем C5W, а также влагозащищенные лампы в корпусе с креплением под болт, рассчитанные на монтаж в бампер в качестве ДХЛ:

003.jpg

Берем для начала лампу в виде светодиодного модуля-панели с выносным цоколем, как у стержневых ламп типа C5W и C10W. Предполагается, что этот модуль можно запихнуть в потолочный светильник автомобиля и подключить к контактам, предназначенным для штатной C5W. Модуль готовый, лепится на двусторонний скотч, рассчитан на простую установку своими руками.

004.jpg

При подаче на лампу 14,2 вольт она буквально бьет по глазам нездоровым светом и стремительно раскаляется в руках – потребляемый ток при включении составляет 0,58 ампера (более 8 ватт) и непрерывно растет от саморазогрева кристаллов – через пару минут он доходит до 0,71 ампера (это уже 10 ватт!) и продолжает повышаться. Держать лампу в руке даже в течение секунды становится невозможно, что говорит о том, что температура перевалила за 70-80 градусов, и это не предел. То, что диоды смонтированы на алюминиевой плате, служащей якобы неплохим теплоотводом, им совершенно не помогает!

0055.jpg

Вывод: в погоне за яркостью китайцы запитали диоды в лампе экстремальным током, превышающим все здравомыслимые пределы, из-за чего такая лампа заранее обречена. Девайс оправдывает свое название – «бренд», породивший эту лампу, называется. Long Hui. Длинный, стало быть, вам «привет». Из Китая.

006.jpg

Следующим берем LED-аналог популярной бесцокольной пятиваттной автомобильной лампочки типоразмера W5W. Светодиодная W5W-лампа имеет упаковку, фасуется по 2 штуки в блистер, на котором имеется марка некоего российского дистрибьютора, но, по сути, она столь же косоглаза и беспородна, как и панелька Long Hui…

У приличных брендов, типа Osram или Philips, светодиодный аналог 5-ваттной лампы накаливания W5W потребляет 1 ватт, что соответствует току около 0,07 ампера. Китайский LED-аналог W5W, как видим, «кушает» значительно больше – 0,26 ампера (около 3,5 ватт) и также быстро разогревается до болезненных ощущений в ладони, тогда как рабочая температура таких диодов не должна превышать 45-50 градусов.

Вывод: лампа условно пригодна для кратковременной работы (скажем, в плафоне освещения багажника), но при долговременном режиме (скажем, в габаритных огнях) она тоже не жилец.

007.jpg

Еще одна лампа-аналог W5W. Лампа совсем уж беспородная – даже в сравнении с предыдущими, ибо продается без упаковки – «на развес». Яркость её ниже, чем у предыдущей, но и режим работы поэтому более правильный. После подачи на лампу напряжения 14,2 вольта она потребляет ток 0,14 ампера – лампа теплая, но не обжигающая, что свидетельствует о почти корректном режиме работы диодов.

008.jpg

Следующий «клиент» – плоская лампа стандарта C5W. Включаем, смотрим – лампа не слишком яркая, но потребляет меньше ватта и весьма умеренно греется. Должна жить долго.

009.jpg

Ну и под конец – лампочки, выполненные в формате болтов для установки в бампер. Жесть как она есть… Единственные, «благодаря» которым автору удалось получить реальный ожог ладони – пусть и несильный… Потребляют всего 0,2 ампера, но за счет алюминиевого корпуса нагреваются снаружи до полного изумления. Не глядя взяв лампочку в руку после горения в течение нескольких минут, был вынужден с матерщиной и визгом её выронить!

010.jpg

Предварительный, промежуточный вывод выглядит так – вставляя LED-лампочки в своих машинах вместо классических, довольные их яркостью и белым светом автовладельцы закрывают плафоны, фары и прочие светильники так и не узнав о том, что при напряжении 14,2 вольта лампы разогреваются до аварийной температуры…

Выводы

В конце хотелось бы озвучить четкие и исчерпывающие рекомендации по подбору качественных ламп. Но сделать это я не берусь вот по какой причине. Возьмем, к примеру, пресловутую лампочку W5W – пятиваттную, бесцокольную, повсеместно используемую в большинстве автомобилей. Классическая лампа накаливания W5W от хорошего бренда стоит 20-30 рублей. Её безымянный китайский светодиодный аналог стоит уже около 100 рублей – и он, хотя светит ярче, а энергии потребляет меньше, является лотереей в плане надежности. Может проработать долго, если китайцы не переборщили с яркостью и потреблением тока, а может «откинуться» через месяц-другой. Соответственно, светодиодная W5W хорошего бренда, типа упоминавшихся уже Osram или Philips, уж точно будет работать долго и счастливо, но при этом и стоит 500-800 рублей за пару, что лично мне видится за гранью добра и зла.

0111.jpg

Собственно, советовать сакраментальное «покупайте бренд!» на фоне вышесказанного трудно, ибо слишком велик ценовой разрыв между качественной лампой накаливания и безымянной «диодкой», не говоря уже о «диодке» именитой. 30 рублей за верную «классику» со спиралькой против 100 рублей за диодную лотерею без гарантии. Или даже 30 против 250-300 за «диодку» европейского производства. Одна лампочка – это еще туда-сюда, но если вы хотите поменять несколько штук, то здравый смысл уже намекает на непродуктивность такого тюнинга, в особенности на фоне кризиса.

Попробуем подобраться к конструктивным и понятным обывателю выводам с другой стороны – как выбрать из изобилия недорогих безымянных китайских LED-лампочек такую, чтобы она служила долго? Теоретически сделать это можно, но вот практически. Чтобы прийти к правильным выводам, нужна слишком сложная процедура плюс навыки радиолюбителя. Взять в руки лампочку, изучить визуально диоды, опознать их породу, вспомнить, какой ток потребляет данный тип диодов, сосчитать их число и вычислить приблизительный потребляемый ток всей лампочки. После чего подать на лампу питание через амперметр и определить – близок ли потребляемый ток к номинальному или завышен. Бред?! Бред.

Другой вариант – купить дешевую LED-лампу и самостоятельно встроить в неё или впаять в разрыв подходящего к патрону провода подобранный резистор, снизив запредельную яркость и температуру диодов. Но тут опять-таки требуются электротехнические навыки и возня, что устроит не каждого.

Так что, похоже, круг замкнулся. Если вышеперечисленные варианты вам не подходят, то либо покупаем дорогой европейский бренд, либо экспериментируем с беспородными лампочками, меняя их одну за другой и ожидая, пока повезет, либо вовсе не вмешиваемся в конструкцию автомобиля и… ждем удешевления LED-девайсов!

Рассмотрим типы светодиодов

Чтобы рассчитать, какой ток или сколько ампер будет потреблять диодная лента, необходимо в первую очередь знать тип ее чипа. На сегодняшний день чипы различаются по мощности. Рассмотрим наиболее популярные модели чипов:

  • 3528. Это самая первая продукция, появившаяся на рынке. Они не такие мощные, как более поздние модели, но при этом экономные;

Внешний вид диодного чипа 3528

Диодный чип 3528

  • 5050. Это чипы уже нового поколения. Для них характерна большая мощность. Лента содержит в своем составе меньше светодиодов в одном метре.

Внешний вид диодного чипа 5050

Диодный чип 5050

Какой ток будет потреблять led-лента зависит в первую очередь не столько от вида чипа, сколько от плотности расположения светодиодов на изделии на 1 м ее длины. Для того чтобы выяснить, сколько диодов расположено в 1 м нужно знать тип чипа, марку led, а также иметь под рукой следующую таблицу. Данные приведены для изделий на 12 вольт.

Обратите внимание! Количество потребляемого тока для 1 м продукции должно быть указано в сопроводительной ее документации. Но если ее нет, можно воспользоваться нижеприведенной таблицей или разыскать более расширенный вариант, где учитывают и редко встречаемые модели.

Таблица сравнения лент на разных чипах

Количество диодов в одном метре

Как видим из таблицы, в 1 м изделия с чипом 3528 могут быть размещено 30, 60 или 90, и 120 диодов. Встречаются даже модели на 12 вольт, где в установлены 240 штук светодиодов. Наиболее часто встречаются изделия 3528 на 12 вольт с 60 диодами в одном метре длины.
Диодная лента с чипами 5050 имеет четыре разновидности, которые делятся в зависимости от количества светодиодов в 1 м. В таблице приведены значения того, какой ток будет потреблять осветительное изделие при размещении в 1 м 30 или 60 диодов. Такие осветительные приборы применяются для подсветки домашних помещению Но есть еще модели, имеющие в 1 м 72 и 120 штук. С их помощью подсвечивают витрины магазинов, рекламные щиты и здания.

Здания со светодиодной наружной подсветкой

Наружная подсветка зданий

Кроме этого в таблице приведен такой важный параметр, как потребляемый ток (ампер) для различной длины (1,2,3,4 и 5 метров). Для приборов с длиной в 5 м данный показатель составит один ампер. Это таблицей очень удобно пользоваться, когда подсветка имеет точное количество метров (например, 4 или 5 метров). В таком случае расчет такого параметра, как потребляемый ток будет достаточно простым.

Сравнение осветительных ламп

Свет. поток, ЛмНакаливания, ВтЛюминесцентная, ВтСветодиодная, Вт
250205-72-3
4004010-134-5
7006015-166-10
9007518-2010-12
120010025-3012-15
180015040-5018-20
250020060-8025-30

С важнейшими терминами вы можете ознакомиться в глоссарии ниже. Производители обязаны указывать эти значения на упаковке.

голоса
Рейтинг статьи
Читайте так же:
Светодиодные лампы для дома выключатель с индикатором
Ссылка на основную публикацию
Adblock
detector