Gsadryer.ru

Промышленное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Овоскоп ОН-10 (прибор контроля качества яиц)

Овоскоп — ОН-10 является переносным световым прибором, предназначенным для контроля качества яиц.

Данный овоскоп выполнен в виде металлического цилиндра, в котором вмонтирован электрический патрон для установки лампы накаливания.

Питание овоскопа осуществляется от однофазной сети переменного тока напряжением 220В, 50Гц. Подключение к сети производится при помощи сетевого шнура, вкл./выкл. осуществляется переключателем ПР1-100. Источником света является лампа накаливания Б 220-230-100Вт.

Особенности:

  • миниатюризация корпуса при сохранении отверстий для 10-ти яиц;
  • стальной корпус с порошковой окраской при массе не более 500 гр.
  • отсутствие в корпусе пластмассовых деталей;
  • удобство и простота замены лампы;
  • наличие резиновых прокладок на ножках для предотвращения скольжения по гладкому столу;
  • наличие сертификата и санитарно-эпидемиологического заключения.

Аппараты включения галогенных ламп накаливания низкого напряжения

Для запуска галогенных ламп накаливания с напряжением 6, 12 и 24 В применяются простые электромагнитные, реже электронные трансформаторы. Восполнение реактивной мощности в таком случае не является обязательным условием, так как лампы накаливания представляют собой активную нагрузку, коэффициент мощности которых равен 1.

Электромагнитные трансформаторы

Достоинства

Электромагнитные трансформаторы легки в использовании, отказоустойчивы, недороги и довольно активно применяются при создании осветительных систем на основе галогенных ламп накаливания.

Недостатки

Тем не менее питание галогенных ламп электромагнитными трансформаторами обладает рядом недостатков:

  1. Выходное трансформаторное напряжение пропорцио-нально входному напряжению, вследствие чего все скачки и перепады напряжения в электрической сети полностью передаются на источник света. Это снижает стабильность функционирования ламп, а при перепадах сетевого напряжения, что довольно-таки распространено в отечественных электросетях, ощутимо снижает продолжительность службы ламп.
  2. Выходное трансформаторное напряжение имеет сильную зависимость от нагрузки. Если рабочая мощность трансформатора равна 105 Вт, то к трансформатору можно подключить три лампы по 35 Вт. Однако если хотя бы одна из ламп не включена или вышла из строя, напряжение на двух других лампах может стать больше номинального рабочего напряжения, что может привести к заметному уменьшению срока службы ламп.
  3. Электрическое сопротивление не нагретых ламп может быть в 20 раз ниже, чем нагретых, при этом у галогенных ламп накаливания эта величина является наибольшей. Это может приводить к сильным скачкам потребляемого сетевого тока — ток во время запуска лампы во много раз выше рабочего тока, что обуславливает особые завышенные требования к подво¬дящим кабелям и используемым предохранителям.
  4. Для управления потоком света необходимо использование специальных приборов (трансформатора, отемнителя).
  5. Трансформаторы на электромагнитной основе имеют достаточно большой вес, что повышает и общую массу светильников.

Электронные трансформаторы

Преодолеть все эти трудности помогла электроника — уже в конце 1980-х годов были выпущены первые в мире электронные трансформаторы.

Продукция

Настенный гипсовый светильник IP20, 50 Вт

Встраиваемый гипсовый светильник IP20, 50 Вт

Встраиваемый гипсовый светильник IP20, 50 Вт

Встраиваемый гипсовый светильник IP20, 50 Вт

Мы поможем подобрать светильники на ваш объект

Достоинства

Электронный трансформатор представляет собой устройство, которое состоит из выпрямителя напряжения и его преобразователя в переменное напряжение высоких частот нужной величины. Преобразователь сконструирован таким образом, что

  • напряжение на выходе трансформатора уже стабилизировано и не зависит ни от перепадов напряжения в сети, ни от нагрузки (в разумных рамках).
  • Помимо этого, напряжение на выходе трансформатора после его запуска постепенно увеличивается в течение 1–2 секунд, что дает возможность исключить скачки сетевого тока.

Преобразователь, работающий на высоких частотах, обязательно будет создавать помехи и искажает потребляемый сетевой ток. Для устранения этих помех и соблюдения обязательных требований электромагнитной совместимости в общую схему электронных трансформаторов добавляются корректирующие ток устройства.

Электронные трансформаторы включают в себя также

  • устройства, которые защищают их при возникновении коротких замыканий, излишнего нагрева и перегрузок тока.
  • Некоторые компании производят электронные трансформаторы, позволяющие плавно управлять потоком света источников от стандартного значения до полного затухания, что намного расширяет сферы использования галогенных ламп накаливания. Регулирование светового потока при этом, как и в электронных пускорегулирующих аппаратах для люминесцентных ламп, может быть как аналоговым, так и цифровым.

Недостатки

Высокочастотная система питания галогенных ламп накаливания, в отличие от люминесцентных ламп, не обладает ощутимыми достоинствами по сравнению с системой питания в сетях с постоянным током или системой питания переменным током низких частот. Высокочастотное питание в этом случае обладает даже определенными недостатками:

  • сопротивление кабелей на высоких частотах намного выше, чем на низких частотах, вследствие чего могут возникать определенные радиопомехи. Радиопомехи генерируются обычно кабелями, которые соединяют трансформатор с источниками света. По этой причине компании-изготовители электронных трансформаторов в маркировке своей продукции обязательно отражают максимально допустимую длину кабелей (обычно не более двух метров).

Для устранения перечисленных недостатков австрийская компания TridonicAtco выпускает трансформаторы мощностью 300 ватт, имеющие уже выпрямленное выходное напряжение. Максимально возможная длина кабелей, которые можно подсоединять к этим трансформаторам, составляет 20 метров. Добавление в схему трансформатора выпрямителя напряжения на выходе значительно усложнило эту схему, заметно снизило его КПД и повысило итоговую цену продукта, однако заметно увеличила пластичность и рабочий потенциал систем освещения на основе галогенных ламп накаливания.

2. АППАРАТУРА

2.1. Испытательная установка для измерения сопротивления изоляции ламп и общие правила испытания должны соответствовать требованиям ГОСТ 8089-71.

2.2. Электрическая схема испытательной установки для измерения сопротивления изоляции должна соответствовать указанной на чертеже.

— вольтметр постоянного тока; — переключатель полярности напряжения; и — контакты, предназначенные для присоединения электродов, металлического баллона или подогревателя, между которыми измеряют сопротивление изоляции, — контакт, являющийся общей точкой схемы; — электронный или магнитоэлектрический микроамперметр постоянного тока

При применении магнитоэлектрического микроамперметра последовательно с ним включают защитный резистор.

Сопротивление защитного резистора и входное сопротивление электронного микроамперметра не должны превышать 5% от наименьшего измеряемого сопротивления изоляции, заданного в технической документации.

Падение напряжения на защитном резисторе и входном сопротивлении электронного микроамперметра не учитывают.

2.3. Погрешность измерения сопротивления изоляции между электродами и между электродами и металлическим баллоном не должна превышать ±20%, а при измерении сопротивления изоляции между катодом и подогревателем ±10%.

Мерцание света — важно или нет?

Мерцание света - невидимый источник проблем

Тема воздействия высокой частоты мигания света источников освещения на окружающий мир периодически становится предметом активного обсуждения специалистов. Статьи, поднимающие вопросы о мере влияния невидимого глазом мигания многих современных источников освещения, опубликованы во многих тематических журналах. В частности Rebekah Mullaney, своими публикациями надеется поощрить производителей светодиодных светильников и дистрибьюторов уделять больше внимания поиску решения, наиболее подходящего для благополучия людей.

Знаете ли вы, что большинство источников света в офисных зданиях не обеспечивают непрерывный свет? Высокие частоты мигания едва заметны для невооруженного глаза, но исследования показали, что определенные уровни воздействия мерцающего света могут быть опасными для здоровья человека.

Тем не менее, жестокая ценовая война, начавшаяся с 2012 года, заставляла малые, средние и даже крупные корпорации снижать стоимость изделий в ущерб качеству, оставляя открытым вопрос о том, какое внимание производители уделяют вопросам качества освещения.

Откуда берётся мерцание света?

Все источники света, работающие на переменном токе (AC), создают мерцающий световой поток из-за флуктуаций тока и напряжения. Флуоресцентные лампы, натриевые лампы высокого давления (HPS), светодиодные источники света имеют общую природу мерцания. Для обеспечения наиболее комфортного и безопасного освещения, требуется питание постоянным током (DC). Частота электрической сети обычно составляет 50 или 60 Гц, частота мерцания люминесцентной лампы обычно выше в два раза частоты электроэнергии, 100 или 120 Гц. Мерцание с малой частотой, примерно от 3 до 70 герц, может привести к судорогам у чувствительных людей, в то время как умеренная частота мерцания, от примерно 100 Гц до примерно 500 герц, незаметна человеческому глазу и может воспринимается только через стробоскопический эффект, однако может привести к неблагоприятным последствиям для здоровья человека, таким как головная боль, напряжение глаз и усталость.

Стробоскопический эффект заключается в восприятии глазом объектов, освещаемых вспышками света, когда объекты в движении могут отображаться в виде серии неподвижных изображений.

Стробоскопический эффект можно наблюдать несколькими способами. Самый простой — посмотреть на источник света с помощью цифрового фотоаппарата, результат показывает характерный волновой эффект, как на изображении 1. Множественные тени движущегося объекта, как показано на рисунке 3, также являются характерным признаком стробоскопического эффекта. Стробоскопический эффект может привести к ложной интерпретации работы механизмов, например видимость замедленного или неподвижного состояния быстро движущихся элементов.

Стробоскопический эффект

Рисунок 1 взят с камеры телефона с видимым волновым эффектом стробоскопического источника света, в то время как рисунок 2 такого эффекта не имеет. Фотографии 3 и 4 показывают, что объект в движении, снятый под стробоскопическим источником света, создает перекрытие тени. В случае без стробоскопического эффекта, фото показывает непрерывное движение без присутствия перекрывающихся теней.

Измерение уровня мерцания

В настоящее время нет официальной стандартной процедуры для измерения мерцания, но Светотехническое общество (IES) разработало две методики для количественной оценки мерцания, которые описаны в рекомендациях по разработке осветительных приборов. Первая и наиболее часто используемая методика основана на вычислении процента мерцания. Процент мерцания указывает на среднее количество модуляции или снижения светоотдачи одного цикла включения-выключения. Источник со 100-процентным мерцанием означает, что в какой-то момент цикла он не производит никакого света, в то время как полностью устойчивый свет будет иметь нулевой процент мерцания.

Другая методика даёт индекс мерцания в интервале от нуля до единицы. Индекс мерцания учитывает процент мерцания и две других переменных: форму кривой изменения интенсивности источника света, или выходной кривой, и скважность мигания, которая указывает отношение времени, когда источник света включен к полному циклу включения-выключения. Чем ниже процент мерцания и индекс мерцания, тем меньше источник мигает или создает ощутимый стробоскопический эффект.

Измерение уровня мерцания

Мерцание различных источников света
ТехнологияПроцент мерцанияИндекс мерцания
Лампа накаливания6,30,02
Линейная лампа T12 с электромагнитным ПРА28,40,07
Спиральная компактная люминесцентная лампа (CFL)7,70,02
Офисный люминесцентный светильник с электромагнитным ПРА370,11
Офисный люминесцентный светильник с электронным ПРА1,80,00
Металл-галогенная лампа520,16
Натриевая лампа высокого давления950,3
Светодиодная лампа с стабилизатором тока2,80,0037
Светодиодная лампа без стабилизатора990,45

Несмотря на то, что традиционные лампы накаливания питаются переменным не стабилизированным током, уровень мерцания таких ламп невысок. Спираль лампы накаливания просто не успевает остыть до следующего импульса тока. Совершенно иначе ведут себя люминесцентные и газоразрядные лампы. Они выключаются практически мгновенно при отключении энергии. В 90-х годах прошлого века, решением этой проблемы стало использование электронных балластов (ЭПРА), которые подавали на лампу частоту более 20 кГц, что делало мерцание невидимым для глаза.

Почему мерцают светодиоды

Светодиоды могут давать мерцание света даже больше, чем лампы накаливания или люминесцентные лампы, поскольку являются прямыми преобразователями электрической энергии в свет. Это означает, что пока подается постоянный ток, светодиод будет гореть без мерцания. Как только ток прекратится, светодиод мгновенно погаснет. Если же ток изменится, то пропорционально изменится и световой поток.

В случае простой схемы питания светодиода, в которой нет стабилизации постоянного тока с помощью драйвера, яркость светодиода будет изменяться одновременно с циклом переменного тока. Выпрямленный переменный ток вызывает пульсации напряжения и тока на светодиоде. Эта пульсация, как правило, происходит на удвоенной частоте питающей сети — 100 или 120 Гц (США) и также в точном соответствии пульсирует световой поток.

Диммирование является другой основной причиной мерцания. Обычные диммеры, например тиристорные, модулируют напряжение за счет изменения времени выключения в цикле включения-выключения, снижая световой поток. Широтно-импульсная модуляция (ШИМ) меняет яркость свечения, включая и выключая светодиод на частотах, в идеале превышающих 200 герц.

Диаграммы мерцания

Воздействие мерцания света на человека

В документах Министерства энергетики США 2013, посвященных исследованиям влияния мерцания света на человека отмечается, что низкая частота мерцания может вызывать эпилепсию, люминесцентные лампы с электромагнитным ПРА, используемые в офисе, также могут вызывать головные боли, усталость, размытие и ухудшение зрения. Стробоскопический эффект иногда вызывает иллюзии при движении в ночное время, в результате чего движущиеся объекты могут показаться замедленными или стоящими на месте. Кроме того, такой эффект также потенциально опасен в промышленных условиях, может привести к проблемам безопасности в строительстве.

Есть определенные группы людей, более уязвимых для негативных последствий мерцания, в том числе дети, больные аутизмом, страдающие мигренью и больных эпилепсией. Поскольку мерцание недоступно для восприятия невооруженным глазом, люди обычно не осознают, что причина дискомфорта, возможно, заключается в мерцании. В этом случае, может быть снижена определенная степень усталости, и повышена общая эффективность работы при изменение качества света.

Методы снижения мерцания светодиодного освещения

Снизить мерцание света позволяет драйвер питания, который может устранить проблему, подавая на светодиод постоянный ток без пульсаций. Однако производители при выборе драйвера питания для своих продуктов учитывают множество факторов, таких как стоимость, размер, надежность и эффективность. Кроме того, область использования светильника также играет роль — мерцание может быть допустимым в определенных условиях освещения.

Производители всегда пытаются оптимизировать полезные качества устройств ровно настолько, сколько требует приложение. Это относится и к мерцанию. Конденсаторы существенной ёмкости могут помочь сгладить пульсации тока, но они тоже имеют недостатки, например они имеют существенный размер и чувствительны к перегреву. В пространстве, которое часто слишком мало, например, во многих светодиодных сменных лампах, большие конденсаторы неприемлемы. Простейшие выпрямители переменного тока с использованием конденсаторов большой ёмкости снижают коэффициент мощности устройства.

В случае светодиодных ламп с диммированием, производители могут модулировать ток с очень высокой частотой, превышающей несколько тысяч герц. Это похоже на электронные балласты для люминесцентных ламп. Однако, чем выше частота, тем ближе физически драйвер должен быть к светодиоду. Иногда потребители хотят располагать драйвер в стороне от системы освещения что не всегда возможно.

Необходимость изготовления устройства питания компактным, эффективным, надёжным, при этом не производящим электромагнитных помех в эфир и питающую сеть, имеющим высокий коэффициент мощности не делает его дешёвым. Однако, среди массы различных вариантов реализации, можно найти золотую середину — приемлемое качество при адекватной цене.

Различные организации, например Alliance for Solid-State Illumination Systems and Technologies (ASSIST), U.S. Environmental Protection Agency, National Electrical Manufacturers Association (NEMA) устанавливают лимиты на технические параметры устройств освещения, которые производители не должны превышать. Таким образом, создаётся база стандартов и рекомендаций, следуя которым, производители вынуждены производить качественные изделия.

Led Professional — Trends & Technologies for Future Lighting Solutions, Jan 15, 2015

ASSIST Recommends … Flicker Parameters for Reducing Stroboscopic Effects from Solid-State Lighting Systems, by the Alliance for Solid-State Illumination Systems and Technologies and the Lighting Research Center, May 2012

“Flicker happens. But does it have to?” by Cree, 2013.

“Exploring flicker in Solid State Lighting: What you might find, and how to deal with it,” by Michael Poplawski and Naomi Miller, Pacific Northwest National Laboratory, 2011.

Dimming LEDs with Phase-Cut Dimmers: The Specifier’s Process for Maximizing Success, ibid., October 2013.

Сабир Моглад

Давайте сначала поговорим о разнице между переменным и постоянным током:

Электричество протекает двумя способами: либо переменным током (AC), либо постоянным током (DC). Электричество или «ток» — это не что иное, как движение электронов через проводник, как провод. Разница между переменным и постоянным током заключается в направлении потока электронов. В постоянном токе электроны постоянно движутся в одном направлении или «вперед». В переменном токе электроны меняют направление, иногда « вперед», а затем «назад ».

давайте возьмем лампочку в качестве примера и посмотрим, почему она работает с использованием переменного или постоянного тока,

Как мы упоминали в случае переменного тока, ток идет вперед, а затем снова идет назад (как в синусоидальной волне)

Изменение направления потока тока происходит так быстро, что у лампочки нет шансов прекратить светиться. Лампочку не волнует, использует ли она постоянный или переменный ток, пока электроны движутся

введите описание изображения здесь

введите описание изображения здесь

как показывают фотографии, электроны движутся вперед и назад, поэтому лампочка все еще работает

Подводя итог, в подобных случаях переменный ток работает с этими устройствами

давайте поговорим о логических схемах, которые требуют 0 или 1 логики

в случае постоянного тока легко иметь 0 в виде 0 вольт и 1 в виде 5 вольт или 3,3 вольт

но в случае переменного тока значение напряжения меняется с положительного на отрицательное, напряжение начинается с 0 вольт, а затем переходит к максимальному напряжению и затем снова возвращается к 0 вольт, а затем начинается отрицательный цикл, мы видим напряжение меняется в зависимости от частоты, и вы не можете включить их, чтобы получить два разных состояния, например 0 или 1!

введите описание изображения здесь

что, если ! Что делать, если вы хотите иметь какой-то механизм, например среднеквадратичное напряжение или максимальное напряжение, чтобы обеспечить два отдельных состояния для логических схем, например, когда среднеквадратичное значение переменного тока составляет 5 вольт (например), логическая схема равна 1, а если среднеквадратичное значение переменного тока 0 вольт, состояние 0, это возможно! но чтобы вычислить среднеквадратичное значение, вам нужно много значений по крайней мере для одного цикла, чтобы вычислить среднеквадратичное значение, которое нецелесообразно сравнивать с постоянным

Что собой представляет светодиодная лампа?

В светодиодных лампах в качестве источника света используются светодиоды, тогда как в обычных лампочках свет излучается за счет накала, который раскаляется под воздействием электрического тока. Изнутри энергосберегающая лампа покрыта люминофором (флуоресцентным красителем), который светится под действием газового разряда.

Каждый тип лампы обладает своими особенностями и недостатками. Конструкция лампы накаливания довольно проста: она состоит из нити накала (обычно изготовляется из вольфрама или его тугоплавких сплавов), заключенной в вакуумированную стеклянную колбу. Под действием электрического тока нить нагревается и начинает светиться. Основным преимуществом ламп накаливания является их низкая стоимость, которое, однако, нивелируется низким КПД. В действительности в свет превращается только 10% затраченной электроэнергии, остальное рассеивается в виде тепла. Кроме того, служит такая лампочка недолго – всего около 1 тыс. часов.

Светодиодные лампы: Чем отличаются от обычных и как выбрать лучшую

Компактная люминесцентная лампа, или КЛЛ (именно так называется энергосберегающая лампа) светит почти настолько же ярко, но при этом потребляет в пять раз меньше электроэнергии. В числе недостатков КЛЛ можно назвать более высокую цену, долгий промежуток разогрева после включения (несколько минут), неэстетичный вид, а также мерцание света, что несет нагрузку на глаза.

Светодиодная лампа состоит из нескольких светодиодов и блока питания, заключенных в корпус. Блок питания – необходимый компонент, так как для функционирования светодиодов требуется питание постоянным током с напряжением 6 или 12 В или переменным током с напряжением 220 В в бытовой электросети.

Чаще всего дизайн корпуса светодиодных ламп напоминает «грушевидную» форму с винтовым цоколем привычных ламп, что обеспечивает их беспроблемную установку. Устройства обладают целым рядом преимуществ, в числе которых разный цвет излучения (в зависимости от применяемых светодиодов), низкое энергопотребление (в среднем в 8 раз меньше по сравнению с лампами накаливания), долговечность (служат в 20-25 раз дольше, чем лампы накаливания), низкое нагревание корпуса, независимость яркости освещения от перепадов напряжения.

Светодиодные лампы: Чем отличаются от обычных и как выбрать лучшую

Существенный недостаток таких ламп – цена. Их ценник в несколько раз превышает стоимость ламп накаливания. Тем не менее, высокая стоимость компенсируется снижением затрат на освещение, при условии, что лампа не перегорит раньше времени. При этом светодиодные лампы вполне приличного качества можно приобрести в интернете, не значительно превышая затраты на обычные лампочки. Например, по этой ссылке на AliExpress можно купить светодиодные лампы стандартной конструкции по весьма привлекательной цене, имеется 9 вариантов мощности.

У светодиодных ламп есть и другие недостатки. В частности, неравномерное светораспределение, связанное с тем, что встроенный блок питания препятствует световому потоку. Тем не менее, некоторые производители обходят это ограничение, используя специальную форму конструкции, например, такую.

Кроме того, матовый корпус лампы выглядит неэстетично в стеклянных светильниках. К недостаткам относятся и отсутствие регулятора яркости (диммер), а также непригодность к применению при очень высоких и низких температурах.

Принципиальная схема

Схема предназначена для работы со светильниками, мощностью до 75 Вт. Следует отметить, что большинство настольных светильников рассчитано на работу с лампами накаливания мощностью не более 60. 75 Вт.

Принципиальная схема Автоматического регулятора мощности для ламп накаливания на 220В

Рис. 1. Принципиальная схема Автоматического регулятора мощности для ламп накаливания на 220В.

В редких случаях разрешается установка лампы мощностью до 100 Вт.

Данное устройство может не только понижать эффективное напряжение питания лампы накаливания относительно входного сетевого напряжения питания, но и повышать его. Например, если в сети вместо ожидаемых и «законных» 220 вольт только 165, то поворотом ручки переменного резистора можно легко увеличить напряжение на лампе до 210. .. 230 В.

В основу этого устройства положен тот факт, что лампам накаливания безразлично переменным или постоянным током они питаются. Кроме ламп накаливания к этому устройству можно подключать и другие приборы соответствующей мощности, например, паяльник.

Эта конструкция представляет собой почти обычный фазовый регулятор мощности, но перед подачей на нагрузку его выходное напряжение выпрямляется диодным мостом V05, пульсации сглаживаются высоковольтным оксидным конденсатором С2.

Как известно, при выпрямлении переменного напряжения диодным мостом со сглаживающим конденсатором, выходное постоянное напряжение получается выше значения входного переменного напряжения. При напряжении в сети 220 В и мощности подключенной лампы EL1 40 Вт, диапазон регулировки постоянного напряжения на лампе EL1 составляет 100. .280 вольт.

Узел управления тринисторами построен на транзисторах VТ1, VТ2, которые включены как аналог однопереходного транзистора, и на высоковольтных транзисторах VT3, VТ4, которые включены аналогом маломощного высоковольтного тринистора с малыми токами включения и удержания.

Мощность, которая подаётся на нагрузку, зависит от сопротивления переменного резистора R1. Чем оно меньше, тем большее напряжение поступит на лампу накаливания.

Мощные высоковольтные тринисторы VS1, VS2 включены встречно-параллельно. Открывшиеся от очередного импульса тока разряда конденсатора С1 транзисторы VT3, VТ4, шунтируют выход диодного моста VD4, что приводит к протеканию импульсов тока через управляющие электроды тринисторов, которые также открываются.

Так как не полностью заряженный оксидный конденсатор С2 для тринисторов и диодного моста VD5 представляет собой короткозамкнутую нагрузку, то необходимо принять специальные меры, воспрепятствующие постепенной деградации свойств и выходу этих элементов из строя.

Для ограничения бросков тока через VS1, VS2, VD5, L1, С2 предназначен мощный проволочный резистор R12 Варистор R8 защищает высоковольтные транзисторы от повреждения всплесками напряжения сети. Фильтр C3L2R15C4 снижает уровень проникающих в сеть помех.

Так как это устройство может не только понижать напряжение питания, но и повышать, напряжение питания нагрузки необходимо контролировать с помощью вольтметра. На элементах R13. R14, VТ5, РА1 сделан простейший вольтметр постоянного тока с растянутой шкалой [Л1, Л2].

Чувствительность вольтметра устанавливается подбором сопротивления R13 При эксплуатации устройства нужно учитывать, что на его выходе постоянный ток, к нему нельзя подключать приборы, предназначенные для работы исключительно на переменном токе. Наиболее просто это обеспечить, если для подключения нагрузки (светильника) использовать электровилку и розетку, нестандартной конструкции.

Требования к питанию охранного освещения

В соответствие с требованиями «Правил устройства электроустановок» (ПУЭ) светильники охранного освещения рекомендуется питать по самостоятельным линиям (п. 6.3.20 ПУЭ) и подключать к отдельной группе распределительного щита.

Осветительные приборы и средства управления системы охранного освещения относится к техническим средствам охраны (ТСО). Технические подсистемы и средства, предназначенные для решения задач по безопасности объекта, относят к 1-й категории электроснабжения. Для систем охранного освещения первую категорию электроснабжения обеспечивают электропитанием от двух независимых источников. В качестве резервного источника электропитания применяют в основном дополнительные независимые фидерные устройства, передвижные и стационарные дизель-генераторы, реже — источники бесперебойного питания, содержащие аккумуляторные батареи.

Сеть переменного тока должна соответствовать стандартам качества, допустимы изменения частоты — 50±1 Гц, изменения напряжения от 187 до 242В (220В плюс 10%, минус 15%).

В соответствии с пунктом 6.3.40. ПУЭ на линиях наружного освещения, имеющих более 20 светильников на фазу, ответвления к каждому светильнику должны защищаться индивидуальными предохранителями или автоматическими выключателями. Для реализации этого требования могут использоваться соединительные коробки (щитки) с предохранителями для сетей освещения, обеспечивающие селективность защиты групповой питающей сети освещения.

голоса
Рейтинг статьи
Читайте так же:
Схема сенсорный выключатель китайской настольной лампы
Ссылка на основную публикацию
Adblock
detector