Gsadryer.ru

Промышленное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электровакуумный диод

Электровакуумный диод

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц [1] .

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Магнитное поле катушки

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Явление самоиндукции

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Схема опыта с лампочками

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

Читайте так же:
Светодиодные лампы для розеток

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Иллюстрация задержки изменения тока в цепи индуктивности

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Возникновение самоиндукции

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3 .

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4 ).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Читайте так же:
Настольная лампа это источник электрического тока

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Основной единицей измерения силы тока в системе СИ является: [I]=A(ампер)=Кл/с

Задание. Какой заряд (q) проходит через поперечное сечение проводника за промежуток времени от t1=2c до t2=6c, если сила тока изменяется в соответствии с уравнением: I=2+t, где сила тока в амперах, время в секундах?

Решение. За основу решения задачи примем определение мгновенной силы тока:

В таком случае, заряд, который проходит через поперечное сечение проводника, равен:

Подставим в выражение (1.2) уравнение для силы тока из условий задачи, примем во внимания границы изменения участка времени:

Ответ. q=24 Кл

Формула силы тока не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A, находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U. Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока, которая будет течь по подводящим проводам в описанном выше процессе. Считать, что диэлектрическая проницаемость керосина равна $varepsilon$.

Решение. Основой для решения задачи станет формул для вычисления силы тока вида:

При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине) рис. 2. Для такой системы конденсаторов напряжение на каждом из них одинаково, поэтому уравнение для изменения заряда при движении удобно искать в виде:

Читайте так же:
Управление тремя лампами одним выключателем

Емкость при параллельном соединении конденсаторов равна:

Формула для расчета емкостей C1 и C2 плоских конденсаторов имеет вид:

где $varepsilon_<0>$ – электрическая постоянная, переменной величиной при погружении системы в керосин является площадь обкладок S:

$S_<2>=A cdot v cdot t ; S_<1>=A cdot(A-v t)$

Из выражений (2.4), (2.5) и условий задачи имеем:

Тогда подставив dC в формулу для силы тока (2.1) получаем:

Ответ. $I=frac U A v>(varepsilon-1)$

Электроэнергия и источник питания

Теперь давайте подробнее разберем нашу схему. Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.

Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:

Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.

Читайте так же:
Сила тока при последовательном соединении ламп

2. Более простой разбор электрической цепи. Сколько потребляет нагрузка?

Мы теперь знаем, что такое замкнутая электрическая цепь. И как течет по нему ток. Также выяснили, что в цепи существует определенная сила тока, напряжение тока, сопротивление нагрузки или нагрузок, а также возникает выработка мощности. Теперь на практике выясним более подробнее.

Нужно запомнить, что чаще всего в электрической цепи, мы можем изменять напряжение тока и сопротивление нагрузки или нагрузок. К примеру, если у нас регулируемый источник питания, мы можем установить регулятор напряжения к отметке 5 В или 12 В. Если используются батарейки, можем взять 2 “пальчиковых” батарейки, это 3 В. Либо можем использовать 3 батарейки, таким образом уже будет 4,5 В. Что касается нагрузки, мы можем подключить 1 лампу накаливания или 2 и т.д., что приведет к изменению общего сопротивления нагрузки. А сила тока будет подстраиваться согласно закону Ома.

Силу тока нужно представлять себе так: показатель силы тока в цепи — это “потребление” нагрузки. Чем больше сила тока в цепи, чем больше потребляется ток нагрузкой. Давайте рассмотрим на примере, если взять две одинаковые аккумуляторные батареи и присоединить к ним разные нагрузки. Быстрее сядет та батарея, в цепи которой было больше силы тока.

Теперь возникает вопрос, если, меняя нагрузку, мы можем менять “потребление” тока, то значит меняя напряжение, мы также можем повлиять на “потребление” тока, то есть на силу тока. Так и есть, если мы увеличим напряжение, увеличится и ток в нагрузке. Но тут необходимо быть осторожным, так как если слишком большой ток пройдет через нагрузку, он может его испортить, так же наоборот, если недостаток тока, то устройство может не работать или работать плохо.

Самоиндукция

Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.

Читайте так же:
Стробоскопической лампы от сети переменного тока

Формула магнитного потока для самоиндукции

Ф = LI

Ф — собственный магнитный поток [Вб]

L — индуктивность контура [Гн]

I — сила тока в контуре [А]

Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.

Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:

  • первая лампа загорится практически сразу,
  • вторая лампа загорится с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.

ЭДС самоиндукции

ξis — ЭДС самоиндукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

ΔI/Δt — скорость изменения силы тока в контуре [А/с]

L — индуктивность [Гн]

Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.

Плюсы и минусы от нагрева электрическим током

  • Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
  • Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector